6,813 research outputs found

    KPZ in one dimensional random geometry of multiplicative cascades

    Full text link
    We prove a formula relating the Hausdorff dimension of a subset of the unit interval and the Hausdorff dimension of the same set with respect to a random path matric on the interval, which is generated using a multiplicative cascade. When the random variables generating the cascade are exponentials of Gaussians, the well known KPZ formula of Knizhnik, Polyakov and Zamolodchikov from quantum gravity appears. This note was inspired by the recent work of Duplantier and Sheffield proving a somewhat different version of the KPZ formula for Liouville gravity. In contrast with the Liouville gravity setting, the one dimensional multiplicative cascade framework facilitates the determination of the Hausdorff dimension, rather than some expected box count dimension.Comment: 14 page

    Automatic summarization of rushes video using bipartite graphs

    Get PDF
    In this paper we present a new approach for automatic summarization of rushes video. Our approach is composed of three main steps. First, based on a temporal segmentation, we filter sub-shots with low information content not likely to be useful in a summary. Second, a method using maximal matching in a bipartite graph is adapted to measure similarity between the remaining shots and to minimize inter-shot redundancy by removing repetitive retake shots common in rushes content. Finally, the presence of faces and the motion intensity are characterised in each sub-shot. A measure of how representative the sub-shot is in the context of the overall video is then proposed. Video summaries composed of keyframe slideshows are then generated. In order to evaluate the effectiveness of this approach we re-run the evaluation carried out by the TREC, using the same dataset and evaluation metrics used in the TRECVID video summarization task in 2007 but with our own assessors. Results show that our approach leads to a significant improvement in terms of the fraction of the TRECVID summary ground truth included and is competitive with other approaches in TRECVID 2007

    Operator Performance in Long Duration Control Operations: Switching from Low to High Task Load

    Get PDF
    Long duration, low task load environments are typical for nuclear power plant control rooms, where operators, after hours of operating under a low task load situation, may have to shift to a high task load situation. The effects of time-on-task and boredom due to low task load will be an important consideration for the design of new nuclear power plant control rooms, which will rely more heavily on automation. This paper describes a research study of performance in a simulated nuclear control room environment, where 36 participants responded to an alarm during a 4 hour long experiment where the alarm onset time and the availability of distractions were varied. The results indicate that operators perform better in a sterile environment and that the duration of non-active time before the alarm influences operator performance.This research was sponsored by the Nuclear Regulatory Commission

    Resonant Enhancement of Electronic Raman Scattering

    Full text link
    We present an exact solution for electronic Raman scattering in a single-band, strongly correlated material, including nonresonant, resonant and mixed contributions. Results are derived for the spinless Falicov-Kimball model, employing dynamical mean field theory; this system can be tuned through a Mott metal-insulator transition.Comment: 4 pages, 3 figures, contribution to the SNS'2004 conferenc

    Laboratory evaluations of a wild crucifer Barbarea vulgaris as a management tool for the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae)

    Get PDF
    The term ‘dead-end trap cropping' has recently been proposed to identify a plant that is highly attractive for oviposition by an insect pest, but on which offspring of the pest cannot survive. The potential of the wild crucifer Barbarea vulgaris R. Br. to allure and serve as a dead-end trap crop for the diamondback moth Plutella xylostella (L.), an important pest of cruciferous crops worldwide, was examined in laboratory experiments. When P. xylostella adults were provided with a dual-choice of plants of B. vulgaris, and Chinese cabbage Brassica campestris (L.), in one arena, adult moths laid 2.5-6.8 times more eggs on the former than on the latter. When P. xylostella adults were provided with a dual-choice of plants of B. vulgaris and common cabbage Brassica oleracea L., adult moths laid virtually all their eggs on the former and ignored the latter. Nearly all P. xylostella eggs laid on the three species of plants hatched successfully, but nearly all individuals on plants of B. vulgaris died as neonates or early instar larvae, while 87-100% of the larvae on Chinese cabbage and common cabbage survived to pupation. Dual choice tests with a Y-tube olfactometer showed that volatiles from B. vulgaris were much more attractive to P. xylostella adults than those from common cabbage. The results demonstrate that B. vulgaris has a great potential as a dead-end trap crop for improving management of P. xylostella. Factors that may influence the feasibility of using B. vulgaris as a trap crop in the field are discussed, and ways to utilize this plant are propose

    Order parameter model for unstable multilane traffic flow

    Full text link
    We discuss a phenomenological approach to the description of unstable vehicle motion on multilane highways that explains in a simple way the observed sequence of the phase transitions "free flow -> synchronized motion -> jam" as well as the hysteresis in the transition "free flow synchronized motion". We introduce a new variable called order parameter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to the "many-body" effects in the car interaction, which enables us to regard it as an additional independent state variable of traffic flow. Basing on the latest experimental data (cond-mat/9905216) we assume that these correlations are due to a small group of "fast" drivers. Taking into account the general properties of the driver behavior we write the governing equation for the order parameter. In this context we analyze the instability of homogeneous traffic flow manifesting itself in both of the mentioned above phase transitions where, in addition, the transition "synchronized motion -> jam" also exhibits a similar hysteresis. Besides, the jam is characterized by the vehicle flows at different lanes being independent of one another. We specify a certain simplified model in order to study the general features of the car cluster self-formation under the phase transition "free flow synchronized motion". In particular, we show that the main local parameters of the developed cluster are determined by the state characteristics of vehicle motion only.Comment: REVTeX 3.1, 10 pages with 10 PostScript figure

    Thermophysical and volumetric study of mixtures {p-cymene¿+¿propan-1-ol} at several temperatures and atmospheric pressure. Modeling with COSMO-RS

    Get PDF
    Experimental isobaric molar heat capacities at atmospheric pressure have been determined for the mixture {p-cymene + propan-1-ol} every 10 K in the temperature interval (298.8–328.5) K and over the entire composition range with a Calvet type calorimeter. Densities, necessary for calculating heat capacities, have been also measured in similar conditions. Excess molar volumes have been calculated from densities. They are positive at (318.15 and 328.15) K and sigmoidal at (298.15 and 308.15) K with negative values in the zone very rich in propan-1-ol. Excess molar heat capacities have been calculated from the molar heat capacities and show positive values. Both excess molar properties increase as the temperature rises at a given molar fraction. Excess properties are discussed in terms of intermolecular interactions. The solvation model COSMO-RS has been applied to predict the excess molar heat capacities, being the quantitative predictions rather poor

    Knotlike Cosmic Strings in The Early Universe

    Full text link
    In this paper, the knotlike cosmic strings in the Riemann-Cartan space-time of the early universe are discussed. It has been revealed that the cosmic strings can just originate from the zero points of the complex scalar quintessence field. In these strings we mainly study the knotlike configurations. Based on the integral of Chern-Simons 3-form a topological invariant for knotlike cosmic strings is constructed, and it is shown that this invariant is just the total sum of all the self-linking and linking numbers of the knots family. Furthermore, it is also pointed out that this invariant is preserved in the branch processes during the evolution of cosmic strings

    The Bose-Hubbard model is QMA-complete

    Full text link
    The Bose-Hubbard model is a system of interacting bosons that live on the vertices of a graph. The particles can move between adjacent vertices and experience a repulsive on-site interaction. The Hamiltonian is determined by a choice of graph that specifies the geometry in which the particles move and interact. We prove that approximating the ground energy of the Bose-Hubbard model on a graph at fixed particle number is QMA-complete. In our QMA-hardness proof, we encode the history of an n-qubit computation in the subspace with at most one particle per site (i.e., hard-core bosons). This feature, along with the well-known mapping between hard-core bosons and spin systems, lets us prove a related result for a class of 2-local Hamiltonians defined by graphs that generalizes the XY model. By avoiding the use of perturbation theory in our analysis, we circumvent the need to multiply terms in the Hamiltonian by large coefficients

    The Causes of Quasi-homologous CMEs

    Get PDF
    In this paper, we identified the magnetic source locations of 142 quasi-homologous (QH) coronal mass ejections (CMEs), of which 121 are from solar cycle (SC) 23 and 21 from SC 24. Among those CMEs, 63% originated from the same source location as their predecessor (defined as S-type), while 37% originated from a different location within the same active region as their predecessor (defined as D-type). Their distinctly different waiting time distributions, peaking around 7.5 and 1.5 hr for S- and D-type CMEs, suggest that they might involve different physical mechanisms with different characteristic timescales. Through detailed analysis based on nonlinear force-free coronal magnetic field modeling of two exemplary cases, we propose that the S-type QH CMES might involve a recurring energy release process from the same source location (by magnetic free energy replenishment), whereas the D-type QH CMEs can happen when a flux tube system is disturbed by a nearby CME
    corecore